Event Structures

Internship report

Marc de Visme

École Normale Supérieure de Paris

With Glynn Winskel
University of Cambridge Computer Laboratory
We want to model games and strategies using event structures.

- Prime Event Structures (PES) support games and strategies, but are limited.
- General Event Structures (GES) does not support strategies fully.
- Event structure with Disjunctive Causes (EDC) is a solution.
Presentation plan

1. Games Semantics

2. Event Structures
 - General Event Structures
 - Event structures with Disjunctive Causes

3. Passing from one way to the other
 - The broken adjunction
 - The \equiv-adjunction
Games and strategies semantics

Game
- Player (+) moves
- Opponent (−) moves
- Set of rules

Strategy
Sup-set of rules, respecting some restrictions

Games and strategies have to support **both** hiding and pullbacks.
Definition of a rGES

(replete) General Event Structure

- Events
- Enabling relation
- Consistency

With some good properties

Configuration

\[X \in C(E) \iff \begin{cases} X \in Con \\ \forall e \in X, \exists X' \vdash e, X' \subseteq X \end{cases} \]

Example
Map of rGES

(Simplified) Map $f : E \to E'$

- f is total
- f is injective
- f preserves configurations

$\langle E, \vdash, \text{Con} \rangle$ has more restrictions than $\langle E', \vdash', \text{Con}' \rangle$.

Games and strategies

A game A is a rGES with polarities. A strategy (S, σ) is a rGES with a map $\sigma : S \to A$, with some restrictions
The pullback of \(rGES \) always exists and is unique.
Hiding of rGES

The property "Any configuration which contain A and E contain D" is lost by hiding.
Definition of an EDC

Event structures with Disjunctive Causes

- Events
- Partial order
- Consistency
- Equivalence relation \equiv

With some good properties

Example
Maps, Pullback and Hiding of EDC

(Simplified) Map $f : E \to E'$
- f is total
- f preserves and reflects \equiv
- f preserves configurations

Pullback and Hiding

Hiding: no problems.
Pullback: always exists (non-trivial) and is unique
<table>
<thead>
<tr>
<th>(replete) General Event Structures. ((rGES))</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Classical way</td>
</tr>
<tr>
<td>- Support pullback</td>
</tr>
<tr>
<td>- Does not support hiding</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event structures with Disjunctive Causes. ((EDC))</th>
</tr>
</thead>
<tbody>
<tr>
<td>- New way</td>
</tr>
<tr>
<td>- Support pullback</td>
</tr>
<tr>
<td>- Support hiding</td>
</tr>
</tbody>
</table>

We need a way to convert \(rGES\) **into** \(EDC\).
The expected adjunction

\[\text{ges}(\alpha) \quad \downarrow \quad A \]

\[\text{ges} \quad \downarrow \quad \text{ges} \quad \downarrow \quad \alpha \]

\[\text{edc}(A) \]
Left adjoint: \(\text{ges} : EDC \rightarrow rGES \)
Right adjoint: $edc : rGES \rightarrow EDC$
Broken adjunction

Marc de Visme (ENS and Cambridge UK) Event Structures

15 / 17
The true adjunction

Definition: The enriched category EDC

\[\forall f, g : E \to E', \; f \equiv g \iff \forall e \in E, \; f(e) \equiv g(e) \]

EDC/\equiv is the quotiented category
Conclusion

- **EDC** supports pullbacks and hiding.
- **EDC** supports games and strategies (with composition).
- We can convert \(rGES \) into **EDC** (with no information lost).